Bioengineering Department, Key Contacts:

Lee Makowski, PhD
Professor and Department Chair
L.Makowski@northeastern.edu, (617) 373-3006

Mark Niedre, PhD
Associate Professor and Associate Chair for Research
M.Niedre@northeastern.edu, (617) 373-5410

Shiaoming Shi, PhD
Assistant Teaching Professor and Master of Science Advisor
s.shi@northeastern.edu, (617) 373-8743

Susan Wilcox
Business Manager
S.Wilcox@northeastern.edu, (617) 373-6405

Chloe Tolman
Administrative Coordinator
c.tolman@northeastern.edu, (617) 363-5506
Table of Contents

1.0 General information 3
 1.1 Graduate Programs and Degrees 3

2.0 Bioengineering Master of Science – Overview and Program Concentrations 3
 2.1 Detailed MS Program Course Requirements 4

3.0 Bioengineering Ph.D. – Overview and Research Areas 8
 3.1 Ph.D. Course Requirements 9
 3.1.1 Students Entering with BS 9
 3.1.2 Advanced Entry Students 11
 3.2 Ph.D. Research Requirements 11
 3.2.1 Finding a Research Advisor 11
 3.2.2 Qualifying Exam (Written and Oral) 12
 3.2.3 Ph.D. Dissertation Committee 12
 3.3 Annual Committee Meetings and Dissertation Proposals 13
 3.2.4 Ph.D. Dissertation Defense 13
 3.3 Example Ph.D. Timeline – Research Milestones 14
 3.4 Ph.D. Funding 14
 3.4.1 Teaching Assistantships 14
 3.4.2 Research Assistantships 15
 3.4.3 Arranging Payment 15

4.0 Petition and Registration Override Procedures 16

5.0 Probation Policies and Procedures 17

6.0 Policies and Procedures for Course Transfer 17

7.0 Policies and Procedures for Requesting Changes in the Graduate Program 18

8.0 Co-op & Experiential Learning 19

9.0 Campus Map 21

10.0 Other Useful links 23

11.0 Bioengineering Faculty and Staff 24

Appendix A. Suggested PhD Electives by Research Area and Master Electives List 31
Appendix B. PhD Advisor Declaration Form 36
Appendix C. Bioengineering Qualifying Exam, Structure and Criteria 38
Appendix D. PhD Dissertation Committee Form 41
1.0 General Information

Welcome to the Department of Bioengineering ('BioE') at Northeastern University! This document provides information for current and prospective students about graduate programs in the Department of Bioengineering, College of Engineering, Northeastern University. Graduate students are expected to read this document, be familiar with the rules and procedures, follow them, and refer to this guide when they have questions.

1.1 Graduate Programs and Degrees

The BioE Department offers two main graduate programs, a Master of Science (MS) in Bioengineering and Doctor of Philosophy (PhD) in Bioengineering. MS and PhD degree programs are only offered as full-time programs. Applicants with a BS or MS degree in bioengineering or related field can apply to the MS and PhD programs. It is not a requirement to hold an MS degree to apply to the PhD program.

2.0 Bioengineering Master of Science – Overview and Program Concentrations

There are 4 concentrations of study for the MS degree program. Each concentration has coursework only, MS project, and MS thesis options. The concentrations and course requirements for each are described in detail in this section.

- **MS Concentration in Bioimaging and Signal Processing**
 This concentration is appropriate for students interested in biomedical imaging and processing of a wide array of signals from biological systems and biomedical instruments. Two courses (Linear Systems Analysis (EECE 7200) and Applied Probability and Stochastic Processes (EECE 7204) are required of all students choosing this option. Extensive additional options are available as approved technical electives.

- **MS Concentration in Cell and Tissue Engineering**
 The cell and tissue engineering concentration is appropriate for students interested in molecular, cell, and tissue engineering. Two courses (Molecular Bioengineering (BIOE 5410) and Cellular Engineering (BIOE 5420) are required of all cell and tissue engineering students. There is an extensive list of approved technical electives to choose from to complete the degree.
MS Concentration in Biomechanics

Students who join the biomechanics concentration will cover multiscale mechanics, including whole-body movement, mechanical properties of biomaterials, and fluid mechanics of physiological fluids. The two courses required of all biomechanics concentration students are Multiscale Biomechanics (BIOE 5650) and Musculoskeletal Biomechanics (ME 5665).

MS Concentration in Biomedical Devices

The biomedical devices concentration is appropriate for students interested in the design and implementation of biological devices and implants. Two core courses, Design of Biomedical Instrumentation (BIOE 5810) and Design, Manufacture, and Evaluation of Medical Devices (BIOE 5250), are required for all students in this concentration.

2.1 Detailed MS Program Course Requirements

The following sections explain the course requirements for students entering the bioengineering Master Program. A total of 32 semester hours are required and a minimum 3.000 GPA. In addition to the core courses for each MS student, each concentration has its own academic track.

Required Core Courses (All Concentrations)

- BIOE 7390 Seminar 0 SH
- BIOE 5100 Medical Physiology 4 SH
- BIOE 6000 Principals of Bioengineering 1 SH

Concentration Specific Requirements

Complete requirements for one of the four MS concentrations as follow:

MS Concentration 1 – Bio-imaging and Signal Processing (28 SH)

Required Course Work

A grade of C or higher is required.

- EECE 7200 Linear Systems Analysis
- EECE 7204 Applied Probability and Stochastic Processes

And one of the following:

- **i) Course Work Option**

 Complete 20 semester hours from the course list. 20 SH

- **ii) Project Option**

 BIOE 7890 Master’s Project 4 SH

 + Complete 16 semester hours from the course list. 16 SH

- **iii) Thesis Option**

 Complete the following (repeatable) course twice:

 BIOE 7990 Thesis 8 SH

 + Complete 12 semester hours from the course list. 12 SH
Concentration 1 Electives Course List:
- BIOE 5320 Advanced Biomedical Measurements and Instrumentation
- BIOE 5235 Biomedical Imaging
- BIOE 5648 Biomedical Optics
- BIOE 7100 Special Topics in Biomedical Imaging and Signal Processing
- BIOL 5581 Biological Imaging
- EECE 5639 Computer Vision
- EECE 7203 Complex Variable Theory and Differential Equations
- EECE 7204 Applied Probability and Stochastic Processes
- PHSC 6226 Imaging in Medicine and Drug Discovery

MS Concentration 2 - Cell and Tissue Engineering (28 SH)

Required Course Work
A grade of C or higher is required.
- BIOE 5410 Molecular Bioengineering
- BIOE 5420 Cellular Engineering

And one of the following:

i) Course Work Option
 Complete 20 semester hours from the course list.

ii) Project Option
 - BIOE 7890 Master’s Project 4 SH
 + Complete 16 semester hours from the course list. 16 SH

iii) Thesis Option
 Complete the following (repeatable) course twice:
 - BIOE 7990 Thesis 8 SH
 + Complete 12 semester hours from the course list. 12 SH

Concentration 2 Electives Course List:
- BIOE 5250 Design, Manufacture, and Evaluation of Medical Devices
- BIOE 5430 Principles and Applications of Tissue Engineering
- BIOE 5820 Biomaterials
- BIOL 5543 Stem Cells and Regeneration
- BIOL 6301 Molecular Cell Biology
- ME 5667 Solid Mechanics of Cells and Tissues
- NNMD 5370 Nanomedicine Research Techniques
- NNMD 5470 Nano/Biomedical Commercialization: Concept to Market
MS Concentration 3 – Biomechanics (28 SH)

Required Course Work 8 SH
A grade of C or higher is required.
ME 5665 Musculoskeletal Biomechanics
BIOE 5650 Multiscale Biomechanics

And one of the following:
 i) Course Work Option 20 SH
 Complete 20 semester hours from the course list.
 ii) Project Option 4 SH
 BIOE 7890 Master’s Project
 + Complete 16 semester hours from the course list.
 iii) Thesis Option 16 SH
 Complete the following (repeatable) course twice:
 BIOE 7990 Thesis
 + Complete 12 semester hours from the course list.

Concentration 3 Electives Course List:
BIOE 5630 Physiological Fluid Mechanics
BIOE 7300 Special Topics in Biomechanics
BIOL 5601 Multidisciplinary Approaches in Motor Control
EECE 7200 Linear Systems Analysis
EECE 7203 Complex Variable Theory and Differential Equations
ME 5650 Advanced Mechanics of Materials
ME 5655 Dynamics and Mechanical Vibration
ME 5657 Finite Element Method
ME 5659 Control Systems Engineering
ME 5667 Solid Mechanics of Cells and Tissues
ME 7210 Elasticity and Plasticity
ME 7238 Advanced Finite Element Method
ME 7245 Fracture Mechanics and Failure Analysis
ME 7255 Continuum Mechanics

MS Concentration 4 – Biomedical Devices (28 SH)

Required Course Work 8 SH
A grade of C or higher is required.
BIOE 5810 Design of Biomedical Instrumentation
BIOE 5250 Design, Manufacture, and Evaluation of Medical Devices

And one of the following:
 i) Complete 20 semester hours from the course list. 20 SH
 ii) Project Option 4 SH
 BIOE 7890 Master’s Project
 + Complete 16 semester hours from the course list. 16 SH
iii) Thesis Option
Complete the following (repeatable) course twice:

- BIOE 7990 Thesis 8 SH
- Complete 12 semester hours from the course list. 12 SH

Concentration 4 Electives Course List:
- BIOL 5587 Comparative Neurobiology
- BIOE 5850 Design of Implants
- BIOE 7400 Special Topics in Biomedical Devices
- CHEM 7247 Advances in Nanomaterials
- EECE 5606 Micro- and Nanofabrication
- ME 5659 Control Systems Engineering
- ME 5665 Musculoskeletal Biomechanics
- ME 5667 Solid Mechanics of Cells and Tissues
- NNMD 5470 Nano/Biomedical Commercialization: Concept to Market
- NNMD 5370 Nanomedicine Research Techniques
- PHSC 6226 Imaging in Medicine and Drug Discovery
3.0 Bioengineering Ph.D. – Overview and Research Areas

Students performing a PhD through the department of Bioengineering will perform required coursework (Section 3.1), as well as cutting edge research (Section 3.2) with one of our core and affiliated faculty. The department features four research areas as follows. Students should consult the Bioengineering Research Map for more information about BioE faculty performing research in these areas.

PhD Research Area 1: Imaging, Instrumentation, and Signal Processing

The Imaging, Instrumentation and Signal Processing track reflects Northeastern University’s outstanding research profile in developing new technologies for visualizing biological processes and disease. Our department has active federally funded research spanning a broad spectrum of relevant areas in instrument design, contrast agent development, and advanced computational modeling and reconstruction methods. Example research centers include the Chemical Imaging of Living Systems Institute, the Translational Biophotonics Cluster, and the B-SPIRAL signal processing group.

PhD Research Area 2: Biomechanics, Biotransport and MechanoBiology

Motion, deformation, and flow of biological systems in response to applied loads elicit biological responses at the molecular and cellular levels that support the physiological function of tissues and organs and drive their adaptation and remodeling. To study these complex interactions, principles of solid, fluid, and transport mechanics must be combined with measures of biological function. The Biomechanics, Biotransport, & MechanoBiology track embraces this approach and leverages the strong expertise of Northeastern faculty attempting to tie applied loads to biological responses at multiple length and time scales.

PhD Research Area 3: Molecular, Cell, and Tissue Engineering

Principles for engineering living cells and tissues are essential to address many of the most significant biomedical challenges facing our society today. These application areas include engineering biomaterials to coax and enable stem cells to form functional tissue or to heal damaged tissue; designing vehicles for delivering genes and therapeutics to reach specific target cells to treat a disease; and, uncovering therapeutic strategies to curb pathological cell behaviors and tissue phenotypes. At a more fundamental level, the field is at the nascent stages of understanding how cells make decisions in complex microenvironments and how cells interact with each other and their surrounding environment to organize into complex three-dimensional tissues. Advances will require a multiscale experimental, computational and theoretical approaches spanning molecular-cellular-tissue levels and integration of molecular and physical mechanisms, including the role of mechanical forces.
PhD Research Area 4: Computational and Systems Biology

We aim to understand the rules governing emergent systems-level behavior and to use these rules to rationally engineer biological systems. We make quantitative measurements, often at the single cell level, to test different conceptual frameworks and discriminate amongst different classes of models. Our faculty are leaders in developing and applying both theoretical methods, e.g., control theory, and experimental methods, e.g., single-cell proteomics by mass-spec, to biological systems. At the organ and tissue levels, 3D scans acquired through medical imaging methods (e.g. US, CT, MRI, etc.) may be used to reconstruct virtual models of targeted systems. Non-invasive measures of the physiological function can then inform numerical simulations to predict the behavior of biological systems over time, with the goal of estimating the progression towards pathological endpoints or to test the efficacy of targeted surgical procedures and pharmaceutical treatments (e.g., drug delivery).

3.1 Ph.D. Course Requirements

The following sections explain the course requirements for students entering the bioengineering PhD program with a BS as well as students entering with a Masters (“Advanced Standing”). The normal course-load for Ph.D. students is 8-9 semester hours (SH) per semester. In addition to course work, students must complete the qualifying, proposal, and PhD defense exam sequence described in detail in section 3. Students should bear in mind that regular research progress is critical to timely completion of their PhD.

3.1.1 Students Entering with BS

Students entering the Bioengineering PhD program with a BS will take a total of 8 courses (32 SH). Three core bioengineering courses (12 SH), two restricted bioengineering technical electives (8 SH), and three unrestricted technical electives (12 SH). Those courses choices are outlined below:

I. Required Core Courses (12 SH):

- BIOE 6100 Medical Physiology
- BIOE 7000 Principles of Bioengineering
- BIOE 7250 Mathematical Methods in Bioengineering

II. Restricted Technical Electives (8 SH):

- BIOE 5235 Biomedical Imaging
- BIOE 5410 Molecular Bioengineering
- BIOE 5420 Cellular Engineering
- BIOE 5430 Principles and Applications of Tissue Engineering
- BIOE 5440 The Cell as a Machine
- BIOE 5630 Physiological Fluid Mechanics
BIOE 5640 Computational Biomechanics
BIOE 5650 Multiscale Biomechanics
BIOE 5656 Fields, Forces, and Flows in Biological Systems
BIOE 5810 Design of Biomedical Instrumentation
BIOE 5820 Biomaterials
ME 5665 Musculoskeletal Biomechanics

III. Unrestricted Technical Electives (12 SH):
Any 3 courses on our master list of approved technical electives. This list is included in
Appendix A. A list of suggested courses by research area is also included. Other courses may
be taken by petition and with approval of Ph.D. Advisor and Ph.D. director.

IV. Professional Development Courses (0 SH):
Complete the following (repeatable) course twice
BIOE 7390 Seminar

V. Dissertation (0 SH):
Complete the following (repeatable) course twice
BIOE 9900 Dissertation
3.1.2 Advanced Entry Students
The curriculum for PhD students with advanced standing will be selected from the available core and elective courses under the guidance of the program director and the student’s primary advisor. The advanced standing PhD degree requires a minimum of 16 semester hours (SH) of course work to be approved by the graduate director and a completed PhD dissertation. Advanced standing constitutes receipt of a relevant and accepted master's degree at a qualified institution.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisor-approved course work</td>
<td>16 SH</td>
</tr>
<tr>
<td>Advanced seminar (register and complete two semesters)</td>
<td>0 SH</td>
</tr>
<tr>
<td>Dissertation (register and complete two semesters)</td>
<td>0 SH</td>
</tr>
<tr>
<td>Minimum semester hours required</td>
<td>16 SH</td>
</tr>
</tbody>
</table>

The Master List of approved technical electives is included in Appendix A. A list of suggested courses by research area is also included. Electives for Advanced Entry students may be replaced with up to 12 SH of relevant independent studies Independent Study (BIOE 7978) by petition.

3.2. Ph.D. Research Requirements
In addition to coursework (Section 3.1), completion of the PhD degree requires students to successfully complete all of the requirements listed below. An example timeline for a PhD student entering with a BS degree is listed in Section 3.3

3.2.1 Finding a Research Advisor
Completion of the research dissertation component of the PhD requires that they select a research advisor. A student has formally selected a research advisor when the PhD Research Advisor Declaration Form (Appendix B) is completed, signed by the student and the advisor, and filed with the Administrative Coordinator of the Biongineering department. The research advisor can be any tenured, tenure-track, or affiliated Bioengineering faculty. All PhD students must have a research advisor within one calendar year after their matriculation at NU; otherwise, their status changes to MS course-only track. If, after change of status, these students can find a research advisor, their status will be reset to PhD.
Choice of research advisor that is a mutually “good match” is perhaps one of the most important decisions a PhD student will make. This is typically done on the student’s initiative, before or within the first semester of joining the PhD program. Students should plan to meet
with prospective advisors, determine their willingness to take on new students, and ask about research in their labs. Example questions a student might ask in this meeting to determine the potential fit are:

Are you taking on new students in your group?

Do you have a specific project in mind? If so, is that project currently funded by a research grant?

What other projects are going on in this the group? Are all the students in your group funded?

What are the most important skills to be successful in your group?

Would you be able to support me on research assistantship?

How often do you meet with your students 1-on-1?

Do you have regular lab meetings? Journal club?

Do you normally pair a student up with a senior student?

How big is your group? How many MS, Ph.D., Postdocs?

Are you a 'hands on' advisor? If not, who would I go to for help?

Can I meet with one of your current grad students?

What journals does your group normally publish in?

What conference does your group regularly attend?

What is your policy on sending students to conferences?

What are your expectations for graduation for a Ph.D. in terms of research output?

3.2.2 Qualifying Exam (written and oral)

In order to continue the PhD Program, students must pass a comprehensive qualifying examination in one of the four department research areas. The qualifying exam is normally taken in the fall semester of the student’s second year. In addition to satisfactory research progress and satisfactory academic standing, students will prepare a 6-page written document. The document should be distributed to his/her qualifying exam committee no later than 14 calendar days before the oral examination. Students who fail their qualifying exam on the first attempt may re-take the exam one in the following spring semester. Students may not take the qualifying exam more than twice. More detailed description of the qualifying exam structure and criteria are provided in **Appendix C**

Qualifying Exam committee: The qualifying examination committee is composed of three members of the Department of Bioengineering faculty. At least two of three committee members will be from the student’s research area. The student's primary research advisor may not sit on the qualifying exam committee.

3.2.3 Ph.D. Dissertation Committee

Within two years of joining the Bioengineering PhD program, students will form their Dissertation committee. The committee should be composed of at least three members. The chair of the committee should be the student’s primary advisor, a member of the core
Bioengineering faculty or a faculty member with affiliations to the Bioengineering Department. Two members of the committee must be core faculty from the department. Once students have formed their committee, they should complete the PhD Dissertation Committee Form Appendix D and file it with the Administrative coordinator of the department. Students will be required to meet with their PhD Dissertation Committee annually to confirm research progress.

Dissertation Course Requirements: Once the qualifying exam has been passed, the doctoral candidate, must register in two consecutive semesters (may include full summer term) for Dissertation (BIOE 9990). Following completion of these semesters, the student must then register for Dissertation Continuation (BIOE 9996) in every semester (in each fall and spring term and also in the summer term if summer is the student’s last semester) until the dissertation is completed. Students may not register for Dissertation Continuation (BIOE 9996) until they fulfill the two-semester sequence of Dissertation (BIOE 9990).

3.3.4 Annual Committee Meetings and Dissertation Proposals
Prior to a student’s first committee meeting, they are required to write a dissertation proposal in the form of an NIH-style R21 proposal research plan, to be distributed no later than 1 week prior to the meeting. Annual progress update meetings must be held annually. At the second to last meeting, held at least four months before the Dissertation Defense, the student must prepare and present a final proposal document. The student will be allowed to progress to the PhD Dissertation Defense upon successful defense of this proposal. Students must hold their first Dissertation Committee meeting no later than their third year.

To meet the full-time registration requirement for PhD students who have completed the majority of their course work and not yet reached PhD candidacy, a zero-credit course, Exam Preparation—Doctoral (BIOE 8960), can be taken if needed to fulfill the full-time course registration requirement. Exam Preparation—Doctoral (BIOE 8960) is an individual instruction course, billed at one semester hour, and graded S or U. Exam Preparation—Doctoral (BIOE 8960) does not have any course content, and students must register in a section for which their research advisor is listed as the “instructor.”

3.2.5 Ph.D. Dissertation Defense
All PhD candidates must complete and defend a dissertation of original research in bioengineering. The format of the defense will be that of an open presentation to the Northeastern Bioengineering community, followed by a closed meeting with their dissertation committee in which they are expected to answer all relevant questions regarding their work, its significance and its relationship to ongoing work across the broader research community.
3.3. Example Ph.D. Timeline – Research Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Spring</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Find Research Advisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Qualifying exam</td>
<td>Makeup Qualifying exam</td>
<td>Form PhD committee</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>First Committee Meeting</td>
<td>Dissertation Proposal in R21 format</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>Second Committee Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 5</td>
<td>Third Committee Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD Dissertation Defense</td>
</tr>
</tbody>
</table>

3.4 Ph.D. Funding

It is the intent and track record of the Department of Bioengineering to ensure continuous funding to all Ph.D. students throughout the tenure of their studies. Most students take about 5 years to earn a Ph.D., and may be funded through a variety of mechanisms including RA and TA awards and external fellowships.

3.4.1 Teaching Assistantships

Teaching assistantships (TAs) are administered by the Department of Bioengineering under the direction of the Business Manager (Susan Wilcox). TAs are allocated to a mixture of incoming PhD and senior students advised by tenured and tenure-track Bioengineering faculty. TAs assist Bioengineering instructors in various aspects of teaching including running laboratories and grading assignments, and therefore requires matching of skills with course needs. TA
funding requests should be made by a student’s research advisor directly to the Business Manager.

3.4.2 Research Assistantships

Research assistantships (RAs) are paid by research advisors to students, normally from research grants to support their dissertation research. RAs are renewable on a semester basis, pending satisfactory research progress and availability of funding. Students should discuss expectations for satisfactory progress with their advisor, but can expect a minimum of 20 hours per week spent on research.

3.4.3 Arranging Payment

Step 1: If you are an international student and you do not have a Social Security Number, the Graduate School of Engineering will produce an “Engagement Form” for you. This form is provided to the Office of Global Services (OGS) on campus so that they can process a Social Security Number for you. If you are a newly-admitted student, the “Engagement Form” will have been provided to the Office of Global Services for your arrival check-in. Otherwise, please request the Engagement Form from the Graduate School of Engineering.

Step 2: All students: Visit the Student Employment Office at 101 Curry Student Center and complete a Direct Deposit Authorization Form and a Form W-4 for tax purposes.

Step 3: All students: Your stipend will be paid directly into your bank account on the 15th and the 30th or 31st of each month during which you hold your assistantship. If your Direct Deposit has not yet been set up, you will collect your paper paycheck at the Human Resources office at 716 Columbus Avenue.
4. Petition and Registration Override Procedures

Please note the following:

1. Petitions/overrides for taking courses must be filed and approved BEFORE registration in the course.
2. Filing a petition/override does not mean that it will be approved, you need to receive the approval to go ahead.
3. Please file your petitions/overrides well in advance. Processing a petition/override takes at least 5 business days.
4. When submitting your petition/override make sure it is completed and signed by you. If you have a research advisor the form must be signed by him/her as well. If the signature of the instructor is needed (for override forms), please make sure that you obtain the signature.
5. All petitions/overrides must be submitted with a copy of your current transcripts. Unofficial transcripts are acceptable for this purpose.

Here are the steps for filing petitions/overrides:

1. To file a petition:
 (a) Download the petition form from here.
 (b) Complete the form, sign it, and get other necessary signatures as described in part 4 above.
 (c) Submit both to the front desk of the Graduate School (Snell 130)
2. To file a registration override form (these forms are used to register in courses that have restrictions:
 (a) Download the override form from here.
 (b) Complete the form and get the necessary signatures as explained in part 4 above.
 (c) If the form is for pre-requisite waiver, get the signature of the instructor too.
 (d) Submit both to front desk of the Graduate School (Snell 130)
5. Probation Policies and Procedures

One academic term with cumulative GPA below 3.000: Students with a cumulative GPA below 3.000 for one term are required to complete an Academic Probation Action Plan to be signed and approved by their academic advisor and submitted to the Graduate School within 7 business days from the start of the next academic term.

Two consecutive terms with cumulative GPA below 3.000: Students with a cumulative GPA below 3.000 for two consecutive terms will be dismissed from their degree program at the end of the second term. Students in this situation may submit an Academic Dismissal Appeal Form to the Graduate School to request a final one-term extension. The appeal will be reviewed by the student's department.

Three consecutive terms with cumulative GPA below 3.000: Students with a cumulative GPA below 3.000 for three consecutive terms will automatically be dismissed from their degree program. In this case, the student may submit an appeal to the Associate Dean of the Graduate School per the University appeals process.

For more information, please refer to the College of Engineering website.

6. Policies and Procedures for Course Transfer

Graduate students can transfer a maximum of 9 SH (or equivalent) course work from other institutions. 4 SH of course work is defined as 45 hours of lecture. For credit transfer from other institutions, the following conditions must be satisfied:

1. Student should have a grade of at least B (or equivalent) in the course.
2. The course must be passed during the past seven years.
3. The course should not be part of the requirements of a degree received by the student in the past.
4. The course will be reviewed by the Graduate Affairs Committee and should be approved as equivalent to a graduate-level Northeastern course that students can take as part of their degree program.

The process for transfer credit requires filing a petition (see Section 4). The petition should be accompanied by the detailed syllabus of the course (including textbook information) and the equivalent NU course as well as sufficient evidence that the course has not been part of the requirements of a degree received by the student. Evidence should be noted on the transcripts or be sent in a letter/formal email from the Student Service Coordinator (or equivalent) confirming credits were not used towards a degree in the former institution.
7. Policies and Procedures for Requesting Changes in the Graduate Program

In general, changes to the graduate program are possible after completing at least one semester at Northeastern. This gives the students an opportunity to get accurate information about each program in order to make an informed decision. The only request for change in the program that is accepted during the first semester is change from full-time to part-time or from part-time to full-time. This change does not apply to those who hold an F-1 student visa.

1. Change from FT to PT or PT to FT. This is the only change that can be petitioned during the first semester. To request this change you need to file a petition as explained in Section 4. FT PhD students cannot change to PT before having a research advisor. Change from FT to PT for international students is only possible if it complies with the Office of Global Services rules.

 For International Students Only: An approved change of program requires that a new I-20 be issued. It is the student’s responsibility to initiate the I-20 process. Instructions are provided on the official admission acceptance letter. Questions should be directed to the International Student and Scholar Institute on campus.

2. Change from PhD to MS: Students need to file a “Change in Degree Level” form and submit it with your transcripts to the front desk of the Graduate School. Students need to get the signature of their research advisor on this form.
8. Co-op & Experiential Learning

Coop and internship are forms of CPT (Curricular Practical Training) that allow full-time students to integrate a practical learning experience into their graduate program. Internship is an option for PhD students only to provide them with work experience that is integral to the student’s education, i.e., required for their dissertation research. Internship provides the opportunity to further the students’ training and knowledge in an area central to advancement of their research. It does not refer to an “internship” as used by companies, agencies and other institutions. Examples include students working at a company, government lab or other entity whereby the tasks, data, protocols, etc. will be brought back to NU and used in an integral way in the advisor’s lab and the student’s research. Coop is available to all graduate students and its goal is to provide students with actual work experience in their field of study and need not be research oriented (though it often is).

8.1 Eligibility

To start the co-op search process, College of Engineering graduate students must:

1. Be enrolled full-time at Northeastern University.
2. Meet all English-language requirements described in the table below.
3. Meet the minimum GPA for their program described in the table below, as applicable.
4. Have no disciplinary or academic probation issues and no incomplete courses (i.e., no I grade in their records).
5. Have at least one term left in their program after completing co-op (i.e., students must return to Northeastern to take courses for at least one term prior to graduating)
6. Have a valid I-20 (for international students).
7. Have completed their first full time semester with a minimum of 8SH completed.
8. Be enrolled in or have completed the Career Management for Engineers (ENCP 6000) or Introduction to Cooperative Education (ENCP 6100) course (depending on their major).
9. Complete a COE Co-op Application and receive Co-op Coordinator approval to initiate a co-op job search.

To participate in Co-op, College of Engineering graduate students must:

1. Meet the minimum semester-hour requirements of 16SH completed as described in the table below.
2. Successfully complete the Career Management for Engineers (ENCP 6000) or Introduction to Cooperative Education (ENCP 6100) (depending on their major).
3. Receive Co-op Coordinator approval prior to accepting a co-op job offer.
4. Meet all of the additional requirements as listed above for starting the co-op search process.
8.2 Applying for Co-op:

1. Graduate students must declare their intention to participate in the co-op process by completing an Application Form (found here). The Application Form should be completed and submitted in person to the student’s co-op coordinator early in the semester prior to co-op (appointments to do so can be scheduled through the MyNEU calendar).

2. When the student receives an offer of employment for a co-op, he/she should meet with their co-op faculty coordinator to discuss the opportunity prior to accepting the offer or agreeing to co-op dates. If not in NUcareers, an electronic copy of the employer information and position description should be submitted to the co-op faculty coordinator. An offer letter should also be submitted. The co-op faculty coordinator will place the student in NUcareers. For F-1 visa students, items 3–7 apply.

3. The co-op faculty coordinator will check the student’s I-20 end date. If the I-20 end date allows the co-op to be completed prior to the end date, students can submit a CPT Request downloadable from the OGS site. The co-op coordinator will approve the request or let the student know if edits need to be made and then send the final request to OGS for processing.

4. The Chair of the Graduate Affairs Committee will approve the request and forward to Graduate Student Services. The student will receive final approval by email.

For more information, visit the COE website
9. Campus Map

https://www.northeastern.edu/campusmap/map/index.html
Key Bioengineering Buildings:

The Interdisciplinary Science & Engineering Complex (ISEC)
Many of the labs and the majority of our Bioengineering faculty have offices on the second and third floors. The Bioengineering department administrative offices are located in 206 ISEC.

Snell Engineering Center
The College of Engineering administrative office is located in room 130

Mugar Life Sciences Building
A number of Bioengineering labs are in Mugar.

Egan Research center
Raytheon Amphitheater is a popular spot for events. The building houses many other events and seminar rooms.

Curry Student Center
Shop in the Northeastern bookstore for textbooks and school supplies, and clothing adorned with the Northeastern logo. There is also the largest food court on campus and a Starbucks.

Labs:
Faculty members have lab spaces in the following areas:
Asthagiri - 260-272 ISEC
Bajpayee - 260B, 262C ISEC
Bellini - 260-272 ISEC
Chung - 020 ISEC
Clark - 271 TF
Dai - 260-272 ISEC
Fang - 020 ISEC
E. Levine – TBD
H. Levine – TBD
Li - TBD
Makowski - 260-272 ISEC
Niedre - 020 ISEC
Oakes - 260-272 ISEC
Parameswaran – 260-272 ISEC
Ruberti - 260-272 ISEC
Shefelbine - 260-272 ISEC
Slavov - 211 Mugar
Popular Coffee Spots
Cafe Strega – ISEC Lobby
Dunkin Donuts - Hayden Hall, Shillman Hall
Starbucks Coffee – Curry Student Center
Pavement Coffeehouse - 44 Gainsborough St
Render Coffee - 563 Columbus Ave
Thinking Cup - 165 Tremont
Tatte Bakery and Café - 369 Huntington Ave
Oakleaf Cakes Bake Shop - 12 Westland Ave
Caffe Nero - 114 New Edgerly Rd

10. Other Useful links
Academic Integrity
Code of Student Conduct
BioE Department Website
BioE Facebook
BioE Twitter
BioE Instagram
BioE LinkedIn
Graduate School of Engineering
Official University Calendars
Registrar’s Office
University Health and Counseling Services
General Graduate Forms
NU Graduate Catalogue
BioE Forms
11. Bioengineering Faculty and Staff

Anand Asthagiri
Associate Professor, Bioengineering
The Asthagiri lab elucidates principals for engineering living cells and tissues. These design principals provide a foundation for tissue engineering and regenerative medicine. Understanding the disassembly of multicellular structures sheds new insights into cancer development and helps to identify therapeutic strategies to re-shape diseased tissue.
226 ISEC, a.asthagiri@northeastern.edu

Ambika Bajpayee
Assistant Professor, Bioengineering
Targeted drug delivery to connective and charged tissues. Her lab utilizes concepts of nanomedicine and bio-electrostatics to design polypeptides and protein-based carriers for targeted and sustained delivery of small molecule drugs, protein growth factors, antibodies and genetic materials to specific intra-tissue and intra-cellular target sites inside connective tissues.
216 ISEC, a.bajpayee@northeastern.edu

Chiara Bellini
Assistant Professor, Bioengineering
Diseases of the cardiovascular system; effects of cell mediated growth and remodeling processes on tissue and organ mechanics
228 ISEC, c.bellini@northeastern.edu

Samuel Chung
Assistant Professor, Bioengineering
Researches central nervous system regeneration model in C. elegans, femtosecond laser surgery; user-friendly and low-cost fluorescence microscopy.
218 ISEC, s.chung@northeastern.edu
Heather Clark
Professor, Bioengineering
Jointly appointed in Bioengineering & Chemistry and Chemical Biology.
Researches Optical nanosensors for biological analysis.
316 ISEC, H.Clark@northeastern.edu

Guohao Dai
Associate Professor, Bioengineering
Researches 3-D bioprinting technology, stem cells technology and vascular bioengineering.
224 ISEC, g.dai@northeastern.edu

Qianqian Fang
Assistant Professor, Bioengineering
Researches innovations in translational medical imaging devices to better diagnose cancers, low-cost point-of-care diagnostic tools to delivery life-saving medicines to the resource-poor regions, and high performance computing tools to facilitate the development of the next-generation imaging methods.
223 ISEC, q.fang@northeastern.edu

Michael Jaeggli
Mathworks Faculty Fellow and Assistant Teaching Professor, Bioengineering
206D ISEC, m.jaeggli@northeastern.edu
Timothy Lannin
Assistant Teaching Professor, Bioengineering
Professor Lannin's previous research included work on automating image analysis of cancer cells, measuring the electrical properties of cancer cells to use electric fields to separate them from blood cells, and measuring the electrical properties of algae cells to optimize their output for biofuels.
206A ISEC, tlannin@northeastern.edu

Erel Levine
Associate Professor, Bioengineering
Researches the analysis of big biological data by developing statistical physics approaches to deep learning; statistical learning approaches to the dynamics, plasticity and evolvability of small regulatory RNA; host-pathogen interaction: in-host dynamics and inter-species systems biology
e.levine@northeastern.edu

Herbert Levine
University Distinguished Professor, Bioengineering and Physics
Studies mechanics of motility at both single cell and multicellular levels, genetic and metabolic networks underlying phenotypic changes en route to cancer metastasis, effective detection by and activation of the adaptive immune system
h.levine@northeastern.edu

Jiahe Li
Assistant Professor, Bioengineering
Researches synthetic biology, drug delivery, polymeric materials and vaccine
225 ISEC, jiah.li@northeastern.edu
Lee Makowski
Professor and Chair, Bioengineering
Jointly appointed with Chemistry & Chemical Biology.
Researches image and signal processing as applied to biophysical data designed to answer fundamental questions about the molecular basis of living systems
206B ISEC, L.Makowski@northeastern.edu

Mark Niedre
Associate Professor and Associate Chair For Research, Bioengineering
Prof. Niedre researches and finds interest in biomedical optics and non-invasive imaging, rare cell detection and tracking in the body, ultrafast time-domain diffuse optical imaging, image reconstruction and biomedical signal processing.
217 ISEC, m.niedre@northeastern.edu

Jessica Oakes
Assistant Professor, Bioengineering
Researches pulmonary physiology, biofluids and transport phenomenon, computational biomechanics, magnetic resonance imaging, and multi-scale modeling.
229 ISEC, j.oakes@northeastern.edu

Harikrishnan Parameswaran
Assistant Professor, Bioengineering
In-situ interactions of organized cellular structures in tissue with their extracellular matrix (ECM); airway smooth muscle-ECM interactions under static and dynamic stretch conditions.
219 ISEC, h.parameswaran@northeastern.edu
Sara Rouhanifard
Assistant Professor, Bioengineering
Interested in, and researching developing chemical approaches to track and quantify important RNA processing events and modifications in single cells; DNA: protein interactions that drive differences in gene expression; understanding differences in RNA expression and the impacts on disease and development.
sa.rouhanifard@northeastern.edu

Jeffrey W. Ruberti
Professor, Bioengineering
Researches tissue engineering of load-bearing matrix (bone, cornea), bioreactor design, multi-scale mechanobiochemistry, statistical mechanics, energetics microscopy, high-resolution imaging; and biopolymer self-assembly.
215 ISEC, j.ruberti@northeastern.edu

Sandra Shefelbine
Associate Professor, Bioengineering
Jointly appointed with Mechanical & Industrial Engineering
Researches multi-scale bone biomechanics – how the structure and composition of bone influences its mechanical properties; mechano-adaptation of bone and joint – how tissue responds to mechanical signals.
222 ISEC, s.shefelbine@northeastern.edu

Shiaoming Shi
Assistant Teaching Professor, Bioengineering
Cancer detection and drug discovery technologies
230 ISEC, s.shi@northeastern.edu
Nikolai Slavov
Assistant Professor, Bioengineering
Researches single-cell proteomics, Ribosome-mediated translational regulation, and quantitative systems biology. Most recently Slavov lab developed a high-throughput method for single cell proteomics by mass spectrometry and used it to quantify proteome heterogeneity during cell differentiation.
334 MU, n.slavov@northeastern.edu

Eduardo Sontag
University Distinguished Professor, Bioengineering
Jointly appointed in Electrical and Computer Engineering and Bioengineering. Researches feedback control theory, systems biology, cancer, and biomedicine.
326 ISEC, e.sontag@northeastern.edu

Staff

Noah Joseph
Lab Technician
n.joseph@northeastern.edu
057 Richards Hall

Van Le
Academic Assistant
va.le@northeastern.edu
206 ISEC
Helen Markewich
Lab Ops & Safety Specialist
h.markewich@northeastern.edu
234 ISEC

Annie Schide
Research Technician
a.schide@northeastern.edu
332 Mugar

Chloe Tolman
Administrative Coordinator
c.tolman@northeastern.edu
206 ISEC

Susan Wilcox
Business Manager
s.wilcox@northeastern.edu
206C ISEC
Appendix A. Suggested PhD Electives by Research Area and Master Electives List

Area 1 – Imaging, Instrumentation, and Signal Processing
BIOE 5235 Biomedical Imaging
BIOE 5810 Design of Biomedical Instrumentation
EECE 5606 Micro- and Nanofabrication
EECE 5639 Computer Vision
EECE 5642 Data Visualization
EECE 5644 Machine Learning
EECE 5648 Biomedical Optics
EECE 5664 Biomedical Signal Processing
EECE 5666 Digital Signal Processing
EECE 7105 Optics for Engineers
EECE 7200 Linear Systems Analysis
EECE 7202 Electromagnetic Theory 1
EECE 7203 Complex Variable Theory and Differential Equations
EECE 7204 Applied Probability and Stochastic Processes
EECE 7211 Nonlinear Control
EECE 7271 Computational Methods in Electromagnetics

Area 2 - Biomechanics, Biotransport and MechanoBiology
BIOE 5650 Multiscale Biomechanics
BIOE 5656 Fields, Forces, and Flows in Biological Systems
BIOE 5820 Biomaterials
BIOL 5601 Multidisciplinary Approaches to Motor Control
BIOL 5587 Comparative Neurobiology
IE 7280 Statistical Methods in Engineering
IE 7315 Human Factors
ME 5250 Robot Mechanics and Control
ME 5650 Advanced Mechanics of Material
ME 5655 Dynamics and Mechanical Vibration
ME 5657 Finite Element Method
ME 5659 Control Systems Engineering
ME 5665 Musculoskeletal Biomechanics
ME 7210 Elasticity and Plasticity
ME 7238 Advanced Finite Element Method
ME 7255 Continuum Mechanics
+ PT 5139 Lab
PT 5150 Motor Control, Development and Learning
Area 3 – Molecular, Cell, and Tissue Engineering
BIOE 5410 Molecular Bioengineering
BIOE 5430 Principles and Applications of Tissue Engineering
BIOL 5543 Stem Cells and Regeneration
BIOE 5650 Multiscale Biomechanics
BIOE 5820 Biomaterials
BIOL 6401 Research Methods and Critical Analysis in Molecular Cell Biology
CHEM 5612 Principles of Mass Spectrometry
CHME 5699 Nanomaterials
CHME 5699 Advanced topics in Biomaterials
CHME 5630 Biochemical Engineering
CHME 5699 Bioanalytical Sensors
PMST 6254 Advanced Drug Delivery System
PHSC 6214 Experimental Design and Biostatics

Area 4 – Computational and Systems Biology
BIOE 7500 Methods and Logic in Systems Biology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOE 5235</td>
<td>Biomedical Imaging</td>
</tr>
<tr>
<td>BIOE 5250</td>
<td>Design, Manufacture, and Evaluation of Medical Devices</td>
</tr>
<tr>
<td>BIOE 5320</td>
<td>Advanced Biomedical Measurements and Instrumentation</td>
</tr>
<tr>
<td>BIOE 5380</td>
<td>Advanced Biomolecular Dynamics and Control</td>
</tr>
<tr>
<td>BIOE 5410</td>
<td>Molecular Bioengineering</td>
</tr>
<tr>
<td>BIOE 5420</td>
<td>Cellular Engineering</td>
</tr>
<tr>
<td>BIOE 5430</td>
<td>Principles and Applications of Tissue Engineering</td>
</tr>
<tr>
<td>BIOE 5440</td>
<td>The Cell as a Machine</td>
</tr>
<tr>
<td>BIOE 5450</td>
<td>Stem Cell Engineering</td>
</tr>
<tr>
<td>BIOE 5630</td>
<td>Physiological Fluid Mechanics</td>
</tr>
<tr>
<td>BIOE 5640</td>
<td>Computational Biomechanics</td>
</tr>
<tr>
<td>BIOE 5650</td>
<td>Multiscale Biomechanics</td>
</tr>
<tr>
<td>BIOE 5656</td>
<td>Fields, Forces, and Flows in Biological Systems</td>
</tr>
<tr>
<td>BIOE 5810</td>
<td>Design of Biomedical Instrumentation</td>
</tr>
<tr>
<td>BIOE 5820</td>
<td>Biomaterials</td>
</tr>
<tr>
<td>BIOE 7100</td>
<td>Special Topics in Biomedical Imaging and Signal Processing</td>
</tr>
<tr>
<td>BIOE 7200</td>
<td>Special Topics in Cell and Tissue Engineering</td>
</tr>
<tr>
<td>BIOE 7300</td>
<td>Special Topics in Biomechanics</td>
</tr>
<tr>
<td>BIOE 7500</td>
<td>Methods and Logic in Systems Biology</td>
</tr>
<tr>
<td>BIOL 5307</td>
<td>Biological Electron Microscopy</td>
</tr>
<tr>
<td>BIOL 5543</td>
<td>Stem Cells and Regeneration</td>
</tr>
<tr>
<td>BIOL 5601</td>
<td>Multidisciplinary Approaches in Motor Control</td>
</tr>
<tr>
<td>BIOL 6300</td>
<td>Biochemistry</td>
</tr>
<tr>
<td>BIOL 6301</td>
<td>Molecular Cell Biology</td>
</tr>
<tr>
<td>BIOL 6401</td>
<td>Research Methods and Critical Analysis in Molecular Cell Biology</td>
</tr>
<tr>
<td>CAEP 6202</td>
<td>Research, Evaluation, and Data Analysis</td>
</tr>
<tr>
<td>CHEM 5620</td>
<td>Protein Chemistry</td>
</tr>
<tr>
<td>CHEM 5621</td>
<td>Principles of Chemical Biology for Chemists</td>
</tr>
<tr>
<td>CHEM 5638</td>
<td>Molecular Modeling</td>
</tr>
<tr>
<td>CHEM 5660</td>
<td>Analytical Biochemistry</td>
</tr>
<tr>
<td>CHEM 7247</td>
<td>Advances in Nanomaterials</td>
</tr>
<tr>
<td>CHEM 7317</td>
<td>Analytical Biotechnology</td>
</tr>
<tr>
<td>CHME 5630</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td>CS 5100</td>
<td>Foundations of Artificial Intelligence</td>
</tr>
<tr>
<td>CS 5200</td>
<td>Database Management Systems</td>
</tr>
<tr>
<td>CS 5310</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>CS 5330</td>
<td>Pattern Recognition and Computer Vision</td>
</tr>
<tr>
<td>CS 5335</td>
<td>Robotic Science and Systems</td>
</tr>
<tr>
<td>CS 5400</td>
<td>Principles of Programming Language</td>
</tr>
<tr>
<td>CS 5600</td>
<td>Computer Systems</td>
</tr>
<tr>
<td>CS 5800</td>
<td>Algorithms</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CS 6140</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>CS 6200</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>CS 6410</td>
<td>Compilers</td>
</tr>
<tr>
<td>EECE 5606</td>
<td>Micro- and Nanofabrication</td>
</tr>
<tr>
<td>EECE 5642</td>
<td>Data Visualization (new)</td>
</tr>
<tr>
<td>EECE 5648</td>
<td>Biomedical Optics</td>
</tr>
<tr>
<td>EECE 5664</td>
<td>Biomedical Signal Processing</td>
</tr>
<tr>
<td>EECE 7200</td>
<td>Linear Systems Analysis</td>
</tr>
<tr>
<td>EECE 7202</td>
<td>Electromagnetic Theory 1</td>
</tr>
<tr>
<td>EECE 7203</td>
<td>Complex Variable Theory and Differential Equations</td>
</tr>
<tr>
<td>EECE 7204</td>
<td>Applied Probability and Stochastic Processes</td>
</tr>
<tr>
<td>EECE 7205</td>
<td>Fundamentals of Computer Engineering</td>
</tr>
<tr>
<td>EECE 7211</td>
<td>Nonlinear Control</td>
</tr>
<tr>
<td>EECE 7213</td>
<td>System Identification and Adaptive Control</td>
</tr>
<tr>
<td>EECE 7214</td>
<td>Optimal and Robust Control</td>
</tr>
<tr>
<td>EECE 7271</td>
<td>Computational Methods in Electromagnetics</td>
</tr>
<tr>
<td>EECE 7310</td>
<td>Modern Signal Processing</td>
</tr>
<tr>
<td>EECE 7323</td>
<td>Numerical Optimization Methods</td>
</tr>
<tr>
<td>EECE 7337</td>
<td>Information Theory</td>
</tr>
<tr>
<td>EECE 7352</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>EECE 7353</td>
<td>VLSI Design</td>
</tr>
<tr>
<td>EECE 7364</td>
<td>Mobile and Wireless Networking</td>
</tr>
<tr>
<td>EECE 7368</td>
<td>High-Level Design of Hardware-Software Systems</td>
</tr>
<tr>
<td>IE 7315</td>
<td>Human Factors Engineering</td>
</tr>
<tr>
<td>ME 5650</td>
<td>Advanced Mechanics of Materials</td>
</tr>
<tr>
<td>ME 5655</td>
<td>Dynamics and Mechanical Vibration</td>
</tr>
<tr>
<td>ME 5657</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>ME 5659</td>
<td>Control Systems Engineering</td>
</tr>
<tr>
<td>ME 5665</td>
<td>Musculoskeletal Biomechanics</td>
</tr>
<tr>
<td>ME 6200</td>
<td>Mathematical Methods for Mechanical Engineers 1</td>
</tr>
<tr>
<td>ME 6260</td>
<td>Introduction to Microelectromechanical Systems (MEMS)</td>
</tr>
<tr>
<td>ME 7210</td>
<td>Elasticity and Plasticity</td>
</tr>
<tr>
<td>ME 7238</td>
<td>Advanced Finite Element Method</td>
</tr>
<tr>
<td>ME 7245</td>
<td>Fracture Mechanics and Failure Analysis</td>
</tr>
<tr>
<td>ME 7255</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>ME 7275</td>
<td>Essentials of Fluid Dynamics</td>
</tr>
<tr>
<td>NNMD 5470</td>
<td>Nano/Biomedical Commercialization: Concept to Market</td>
</tr>
<tr>
<td>OR 6205</td>
<td>Deterministic Operations Research</td>
</tr>
<tr>
<td>PHSC 5100</td>
<td>Concepts in Pharmaceutical Science</td>
</tr>
<tr>
<td>PHSC 6210</td>
<td>Drug Design, Evaluation, and Development</td>
</tr>
<tr>
<td>PHSC 6218</td>
<td>Biomedical Chemical Analysis</td>
</tr>
<tr>
<td>PHSC 6290</td>
<td>Biophysical Methods in Drug Discovery</td>
</tr>
<tr>
<td>PHYS 7301</td>
<td>Classical Mechanics/Math Methods</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>PHYS 7321</td>
<td>Computational Physics</td>
</tr>
<tr>
<td>PHYS 7741</td>
<td>Biological Physics 2</td>
</tr>
<tr>
<td>PMST 6250</td>
<td>Advanced Physical Pharmacy</td>
</tr>
<tr>
<td>PMST 6252</td>
<td>Pharmacokinetics and Drug Metabolism</td>
</tr>
<tr>
<td>PMST 6254</td>
<td>Advanced Drug Delivery System</td>
</tr>
<tr>
<td>PT 5138</td>
<td>Neuroscience</td>
</tr>
<tr>
<td>PT 5139</td>
<td>Lab for PT 5138</td>
</tr>
<tr>
<td>PT 5150</td>
<td>Motor Control, Development, and Learning</td>
</tr>
<tr>
<td>PT 5151</td>
<td>Lab for PT 5150</td>
</tr>
<tr>
<td>SLPA 5111</td>
<td>Anatomy and Physiology of the Auditory System</td>
</tr>
<tr>
<td>SLPA 6301</td>
<td>Speech Science</td>
</tr>
</tbody>
</table>
Appendix B. PhD Advisor Declaration Form (Following Page)
Northeastern University
Department of Bioengineering

PhD Advisor Declaration/Advisor Change Request Form

Student Name __

NUID# __________________________ E-mail Address ____________________________

Advisor Declaration

Advisor Name (print) __

Department ___

Semester/Year Advisor’s RA Support to Begin __

*Advisor’s Index Number(s) for first two semesters of RA support ______________________

Proposed Advisor’s Signature __________________________ Date ______________________

Advisor Change Request

Current Advisor Name (print) __________________________

Department ______________________________________

Current Advisor’s Signature _________________________ Date ______________________

Proposed New Advisor’s Name (print): __________________________

Department ______________________________________

Proposed New Advisor’s Signature: _________________________ Date ______________________

Semester/Year New Advisor’s RA Support to Begin ________________________________

*New Advisor’s Index Number(s) for first two semesters of RA support __________________

Proposed New Advisor’s Signature: _________________________ Date ______________________

Student Signature __ Date: __________

Approved by Bioengineering Graduate Director ___________________________________ Date __________

*Note to Advisor: Index numbers for advisor’s support of subsequent semesters will be required at the time of SGA appointment requests.

After completing this form, submit it to the Business Manager, Bioengineering Office, ISEC 206, and save a copy for your records.
Appendix C. Bioengineering Qualifying Exam, Structure and Criteria

I. Timing and Organization
i) To be taken in Fall of 2nd year (typical)
ii) In one of 4 subject areas
 1) Imaging, Instrumentation, and Signal Processing
 2) Biomechanics, Biotransport and MechanoBiology
 3) Molecular, Cell, and Tissue Engineering
 4) Computational and Systems Biology
iii) Exam committee will be 3 core BioE faculty
iv) Evaluation process:
 There will be a tentative evaluation during the exam (evaluation sheet).
 At the end of ‘exam period’ the committee meets and decides on pass/fail for each student
 The advisor may attend the meeting and provide input on the student’s research progress.
 The advisor may also provide their input in writing before the meeting.
v) There will be a makeup exam in the Spring semester.
vi) Students may take the exam only twice.

II. Exam Structure and Requirements
i) The qualifying exam committee will provide a list of 6 papers in the students’ subject area
ii) Students will submit their top 3 choices based on their interest and knowledge. They will be assigned 1 paper (best match) approximately 4 weeks before the exam.
iii) Students will prepare a 6-page (maximum) written document 2 weeks before the oral exam
iii) The written document will be in two parts:
 1) Summary, review and critique of the paper* (3 pages)
 2) A short research proposal (1-2 Aims) that builds on the selected paper (3 pages)
iv) The oral exam will be maximum 2 hours in length. The student will present and be questioned on their written document.
v) Immediately following the exam, the committee will complete the preliminary evaluation form. The evaluation rubric for the exam is included on the next pages for the student’s reference.
vi) Students will not be informed of the result of the exam until after the final meeting.
 Advisors have the opportunity to provide input at or before the final review meeting.
Bioengineering Qualification Exam Evaluation Sheet

Student: __________________________ Date: __________________________

Examiners Present:

General Instructions:
• This assessment should be completed immediately after the oral qualification exam without the student present.
• Oral exam will be conducted in two parts, i) comprehension of the selected paper, and, ii) the proposal.
• Students will be assigned a score from 1 to 9 for each section,
 1 = “outstanding”, 9 = “unacceptable”, 5 = “average”
• Students will not be informed of the exam result on the day of the exam.

Exam Part 1 – Journal Paper:

1a) Did the student demonstrate understanding the underlying scientific premise of the paper?
 1 2 3 4 5 6 7 8 9

1b) Did the student understand the relevant methods, assays, imaging modalities etc. involved in the experiments?
 1 2 3 4 5 6 7 8 9

1c) Did the student understand the key results and their scientific significance?
 1 2 3 4 5 6 7 8 9

1d) Could the student describe the limitations and potential extensions of the paper?
 1 2 3 4 5 6 7 8 9

1e) Overall, what was the students level of comprehension of their selected paper?
 1 2 3 4 5 6 7 8 9

1f) Other comments for Part 1:
Exam Part 2 – Proposal:

2a) Significance
Did the proposal address an important problem or a barrier to progress in the field? If the aim(s) of the project is achieved, how will scientific knowledge, and/or technical capability, be improved? (from NIH)

1 2 3 4 5 6 7 8 9

2b) Innovation
Does the proposal utilize novel theoretical concepts, approaches or methodologies, instrumentation, or interventions? (from NIH)
1 2 3 4 5 6 7 8 9

2c) Scientific approach and rigor:
Was the overall strategy, methodology, and analyses well-reasoned and appropriate to accomplish the specific aims of the project? Are potential problems, alternative strategies, and benchmarks for success presented? (from NIH)
1 2 3 4 5 6 7 8 9

2d) Quality of oral presentation:
Clarity, quality of presentation materials etc.
1 2 3 4 5 6 7 8 9

2e) Quality of written proposal:
Proper references, grammar, structure, adherence to page limits:
1 2 3 4 5 6 7 8 9

2f) Overall proposal assessment:
1 2 3 4 5 6 7 8 9

2g) Other comments for part 2:

Preliminary Exam Result: Fail Pass
Appendix D. PhD Dissertation Committee Form (Following Page)
Northeastern University
Department of Bioengineering
Doctoral Degree in Bioengineering

Ph.D. Dissertation Committee Form

Name: ________________________________

Date: ________________________________

NUID: ________________________________

Dissertation Committee Composition:
The Dissertation Committee composition will adhere to the following guidelines: The dissertation committee should be composed of a minimum of three members, two of whom must be selected from the list of bioengineering affiliated faculty. In addition, one of the two affiliated faculty must have a primary appointment in the College of Engineering.

Committee Member Name (print): ________________ Department: ________ Signature: ________________
Committee Member Name (print): ________________ Department: ________ Signature: ________________
Committee Member Name (print): ________________ Department: ________ Signature: ________________
Committee Member Name (print): ________________ Department: ________ Signature: ________________
Committee Member Name (print): ________________ Department: ________ Signature: ________________

Student’s Signature ___ Date: ________________

Approved by Bioengineering Graduate Director ___________________________ Date: ________________

After completing this form submit it to Susan Wilcox in the Bioengineering Office (206 ISEC) and save a copy for your records.